The Co-Cr-Ta (Cobalt-Chromium-Tantalum) System

K.P. Gupta, The Indian Institute of Metals

Introduction

Very little work has been done in the Co-Cr-Ta system. Only the face-centered-cubic (fcc) γ Co phase boundary has been established at high temperature. The aging of Co-Cr-Ta alloys has been studied and is reported here.

Binary Systems

Two evaluated versions of the Co-Cr phase diagram are shown in Fig. 1(a) [1978All, 1990Gup] and (b) [Massalski2]. The two versions are in quite close accord except for the Co-rich region below ~900 °C. The two agree with regard to the following. Above 1300 °C, the Co-Cr system is a simple eutectic system with the eutectic reaction, $L \leftrightarrow (Cr) + (\gamma Co)$, occurring at 1395-1397 °C. At 1283 °C, the (Cr) solid solution undergoes a congruent transformation to a σ phase. A eutectoid reaction, (Cr) $\leftrightarrow \sigma + (\gamma Co)$, occurs near 1260-1266 °C. A peritectoid reaction, (γ Co) + $\sigma \leftrightarrow (\epsilon Cr)$, occurs at 967 °C. Lack of agreement between the two evaluated diagrams occurs (a) in the composition region with compositions of <~35 at.% Cr at temperatures below ~900 °C, where extensive studies have not been made, and (b) in a region like those found in all Co-rich alloys, where the establishment of equilibrium conditions is difficult because the (ε Co) \leftrightarrow (γ Co) transformation is sluggish and is complicated by extensive faulting. In Fig. 1(b), the interpretation of the ferromagnetic to paramagnetic transformation, $(\gamma_f Co) \leftrightarrow (\gamma_p Co)$, is likely to be valid because similar behavior is observed in other systems, e.g., Co-V, Co-Mn [1981Ind1, 1981Ind2, 1982Ind, 1982Mio]. This interpretation treats the transformation as being second-order, occuring with a decrease in temperature and with an increase in Cr content. The decrease continues to ~855 °C, and at that temperature the transformation changes to first order. Insert in Fig. 1(a) shows the existence of three phases. Co₃Cr, Co₂Cr, and Co₃Cr₂, suggested by [1961Gri] as forming congruently at ~620, ~640, and, ~625 °C. Of these phases, the existance of the Co₃Cr phase has been confirmed by [1969Sin], but no confirmation has been found to corroborate the existance of the other two phases Co₂Cr and Co₃Cr₂. The uncertainties with regard to this low-temperature, Co-rich region are not relevant to the present discussion of the ternary system, since the ternary data pertain to higher temperatures.

The Co-Ta system [Massalski2] (Fig. 2) and [1996Gar] shows the existence of six intermediate phases: Co₇Ta₂; three Laves phases λ_1 , λ_2 , and λ_3 ; Co₆Ta₇ (μ); and CoTa₂. The CoTa₂ and the λ_3 phases form through peritectic reactions L + (Ta) \leftrightarrow CoTa₂ at 1800 °C, and L + $\lambda_2 \leftrightarrow \lambda_3$ at 1450 °C. The λ_2 and μ phases melt congruently at 1620 and 1700 °C, respectively. The λ_1 and Co₇Ta₂ phases form through peritectoid reactions $\mu + \lambda_2 \leftrightarrow \lambda_1$ at 1540 °C and λ_3 + (γ Co) \leftrightarrow Co₇Ta₂ at 950 °C. Three eutectic reactions, L $\leftrightarrow \mu$ + CoTa₂, L $\leftrightarrow \mu + \lambda_2$, and L $\leftrightarrow (\gamma$ Co) + λ_3 , occur at 1670, 1570, and 1280 °C, respectively. The λ_1 phase undergoes a eutectoid transformation $\lambda_1 \leftrightarrow \mu + \lambda_2$ at 1130 °C. The reaction through which fcc (γ Co) changes to closepacked hexagonal (cph) (ϵ Co) is not well established. [1967Ram] suggested a peritectoid reaction (γ Co) + Co₇Ta₂ $\leftrightarrow (\epsilon$ Co) at ~1000 °C. However, the Co₇Ta₂ phase is stable only below 950 °C. If the peritectoid reaction of formation of (ϵ Co) occurs, it must be below 950 °C.

The Cr-Ta system [Massalski2] (Fig. 3) shows only one intermediate phase, Cr₂Ta, in two polymorphic forms. The Cr₂Ta (HT) phase melts congruently at 2020 °C, and Cr₂Ta (LT) forms through a peritectoid reaction Cr₂Ta (HT) + (Ta) \leftrightarrow Cr₂Ta (LT) at 1695 °C. The Cr₂Ta (HT) transforms through a eutectoid reaction Cr₂Ta (Ht) \leftrightarrow (Cr) + Cr₂Ta (LT). Two eutectic reactions L \leftrightarrow (Cr) + Cr₂Ta (HT) and L \leftrightarrow Cr₂Ta (HT) + (Ta) occur at 1760 and 1965 °C, respectively.

Binary and Ternary Phases

In the three binary systems, Co-Cr, Co-Ta, and Cr-Ta, 11 intermediate phases form. Very little information is available for the ternary system, and no ternary phase has been reported. The structure data for binary phases are given in Table 1.

Ternary System

The Co-Cr-Ta system was studied at the Co end by [1965Dra]. The alloys were prepared by arc melting pure metals (99.9 mass% Co, 99.35 mass% Cr, and 99.9 mass% Ta) in the composition range up to 0-25 wt.% Cr and 0-35 wt.% Ta. The alloys were sealed in evacuated silica tubes annealed for 1000 h at 1200 °C, and then quenched in water. X-ray diffraction (XRD) and metallography were used for phase identification, and the fcc (γ Co) phase boundary was determined. In the multiphase alloys, XRD of solid samples showed the presence of an MgNi₂ type λ_3 phase at 1200 °C. The solubility limit of the (γ Co) phase region in the Co-Cr-Ta system is shown in Fig 4. The (γ Co) phase boundary of Fig. 4 does not agree with the solubility limits given by the accepted Co-Cr and Co-Ta binary data. The solubility limit of (γ Co) phase in the Co-Cr system is ~39 wt.% Cr at 1200 °C. Thus, at the Co-Cr binary, the (γ Co) phase boundary of the Co-Cr-Ta system should be ~39 mass% Cr, as indicated by the dashed line in Fig. 4. On the Co-Ta side of the Co-Cr-Ta system (Fig. 4), the phase boundary is slightly above 10 mass% Ta, whereas the Co-Ta diagram shows it to

Fig. 1(a) Co-Cr binary phase diagram [1990Gup, 1978All]

be ~6 mass% Ta. [1965Dra] found a binary Co-Ta alloy with 10 mass% Ta to be single phase after 1000 h annealing at 1200 °C. Since a very long annealing period was used by [1965Dra], the binary data should be rechecked. Because of this, no adjustment of the (γ Co) phase boundary at the Co-Ta side of the Co-Cr-Ta system (Fig. 4) has been done.

In the Co-Cr-Ta system, the presence of a ternary $MgZn_2$ -type Laves phase at the CoCrTa composition was reported by [1967Lav]. Since both the Co-Ta and Cr-Ta

systems show the presence of a $MgZn_2$ Laves phase at high temperature, the existence of a $MgZn_2$ -type CoCrTa ternary Laves phase suggests a possible extension of the $MgZn_2$ Laves phase region from the Co-Ta binary to the Cr-Ta binary system. This should be verified through a more detailed experimental study of the Co-Cr-Ta system.

A part of the 1200 °C annealed specimens were aged at 1000, 800, 700, and 600 °C for 2-250 h. A hardness measurement of the aged alloys showed an increase in hardness

Fig. 1(b) Co-Cr binary phase diagram [Massalski2]

Fig. 2 Co-Ta binary phase diagram [Massalski2]

with an increase in Cr and Ta content, and the maximum change in hardness occurred at 700 °C. A more detailed investigation of the aging of Co-Cr-Ta alloys was carried out with two alloys containing 8 mass% Cr and 10 mass% Ta and 15 mass% Cr and 8 mass% Ta. Aging of the solu-

tion-treated (1200 °C for 2 h) alloys was carried out for 16 h and 100 h at various temperatures (i.e., 600, 700, 800, and 1000 °C). For both aging times, the maximum increase in hardness was produced at 700 °C. One hundred hours of aging at 700 °C produced an increase in hardness greater

Fig. 3 Cr-Ta binary phase diagram [Massalski2]

Table 1	Phases pro	esent in bina	ry systems	G Co-Cr,	Co-Ta,	and Cr-T	a and their	structure da	ta
			•						

					Lattice parameter, nm	
Phase designation	Composition	Pearson's symbol	Space group	Туре	a	С
α	(Cr), (Ta)	cI2	Im3m	W		
γ	(yCo)	cF4	$Fm\overline{3}m$	Cu		
ε	(eCo)	hP2	P6 ₃ /mmc	Mg		
σ	Co ₇ Cr ₈	<i>tP</i> 30	P4 ₂ /mnm	σ (Cr,Fe)	0.8758	0.4536
ζ	Co ₃ Cr ₂					
ν	Co ₂ Cr					
π	Co ₃ Cr	hP8	P6 ₃ /mmc	Ni ₃ Sn	0.5028	0.4034
$\rho_1(a)$	αCo ₃ Ta	cP4	$Pm\overline{3}m$	AuCu ₃	0.3647	
$\rho_2(a)$	βCo ₃ Ta	hR12	$R\overline{3}m$	BaPb ₃	0.51864	1.8870
λ_3	Co ₇₄ Ta ₂₆	hP24	P6 ₃ /mmc	MgNi ₂	0.476	1.550
λ_2	Co ₂ Ta	cF24	$Fd\overline{3}m$	Cu ₂ Mg	0.6783	
	Cr ₂ Ta (LT)	<i>cF</i> 24	$Fd\overline{3}m$	Cu ₂ Mg	0.6985	
λ_1	Co ₆₂ Ta ₃₈	hP12	P6 ₃ /mmc	MgZn ₂	0.4836	0.786
	Cr ₂ Ta (HT)	hP12	$P6_3/mmc$	MgZn ₂	0.4932	0.8082
μ	Co ₆ Ta ₇	hR13	$R\overline{3}m$	Fe ₇ W ₆	0.4928	2.644(b)
τ	CoTa ₂	<i>tI</i> 12	I4/mcm	Al ₂ Cu	0.6115	0.4972
(a) Co_3Ta (ρ) phase has	s been reported to have	two crystal modifications [1	996Gar]. (b) Lattice pa	arameters of hexago	nal cell	

than two times the hardness of the solution-treated alloy. At 800 °C, hardness decreased considerably due to overaging, and the extracted precipitate particles on XRD showed the precipitated phase to be β Co₃Ta. On aging at 700 °C for 16 h, electron micrographs showed a finely dispersed precipitated phase. Electron diffraction showed diffraction spots due to a cubic (γ Co) matrix phase together with cubic superstructure diffraction spots oriented paralled to the {111} planes. The cubic superstructure phase was found to be

related to the (γ Co) cubic α Co₃Ta phase. Electron diffraction also showed the presence of regions with hexagonal structure in the solid solution phase. The phase regions with hexagonal structure also showed the presence of a superstructure that was not identified. It was concluded that the observation of the α Co₃Ta-related superstructure in cubic phase regions is due to the first stage of formation of the α Co₃Ta metastable phase reported by [1959Kor] in their study of the Co-Ta system.

Fig. 4 A partial isothermal section of Co-Cr-Ta system at 1200 °C showing the fcc (γ Co) phase boundary. Dashed line indicates the probable phase boundary on the Co-Cr side of the diagram.

References

- **1959Kor:** M. Korchinsky and R.W. Fountain, Precipitation Phenomenon in Cobalt-Tantalum System, *Trans. Met. Soc. AIME*, Vol 215, 1959, p 1033-1043 (Phase Equilibria, #)
- **1961Gri:** A.T. Grigorev, E.Yu. Pu, and E.M. Sokolovskaya, Solid State Transformations in the Co-rich Region of the Chromium-Cobalt System, *Russ. J. Inorg. Chem.*, Vol 6, 1961, p 827-830 (Phase Equilibria, #)
- **1965Dra:** J.M. Drapier, J.L de Brouwer, and D. Coutsouradis, Refractory Metals and Intermediate Precipitates in Cobalt-Chromium Alloys, *Cobalt*, Vol 27, 1965, p 59-72 (Phase Transformation)
- **1967Lav:** F. Laves, in *Intermetallic Compounds*, J.H. Westbrook, Ed., John Wiley & Sons, 1967
- **1967Ram:** A. Raman, X-Ray Investigation in the Tantalum-Cobalt System, *Metallurgy*, Vol 21, 1967, p 900-903 (in German) (Phase Equilibria, #)
- 1969Sin: A.K. Sinha, Close Packed Ordered AB₃ Structures in Binary Transition Metal Alloys, *Trans. AIME*, Vol 245, 1969, p 237-240 (Experimental, Structure)
- 1978All: G. Allibert, C. Bernard, N. Valignat, and M. Dombre,

Experimental Redetermination of the Phase Diagram and Comparison with the Diagram Calculated from the Thermodynamic Data, *J. Less Common Met.*, Vol 8 (No. 3), 1978, p 216-220 (Evaluation)

- **1981Ind1:** G. Inden, *Physica*, Vol 103B, 1981, p 82-100 (Magnetism and Phase Equilibria)
- **1981Ind2:** G. Inden, *Scr. Metall.*, Vol 15, 1981, p 669-671 (Magnetism and Phase Equilibria)
- **1982Ind:** G. Inden, *Bull. Alloy Phase Diag.*, Vol 2, 1982, p 412-422 (Magnetism and Phase Equilibria)
- **1982Mio:** A.P. Miodownik, *Bull. Alloy Phase Diag.*, Vol 2, 1982, p 406-412 (Magnetism and Phase Equilibria)
- **1990Gup:** K.P. Gupta, *Phase Diagrams of Ternary Nickel Alloys*, The Indian Institute of Metals, 1990 (Review)
- **1996Gar:** S.P. Garg, M. Venkatraman, N. Krishnamurthy, and R. Krishnan, *Phase Diagrams of Binary Tantalum Alloys*, The Indian Institute of Metals, 1996 (Review)

Indicates presence of phase diagram.

Co-Cr-Ta evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1996. Dr. Gupta is the Alloy Phase Diagram Program Co-Category Editor for ternary nickel alloys.